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A fluid flowing down a vertical surface due to gravity is an example of an active dissipative medium. The energy supply 

comes from the gravitational force while the dissipation comes from the viscous friction force. Studies of the linear stability of 

failing films of fluid [1, 2] have shown that smooth plane-parallel flow is unstable, no matter how small the Reynolds number. 
Usually motion in a film is considered laminar-wave flow up to Re - 300-400 [3]. 

Almost all theoretical research has been done in the long-wavelength approximation, which corresponds to experimental 

data. It has been shown [4] that the long-wavelength approximation can be used up to Re ~ 1000 for ordinary fluids. This 
approximation allows the complete system of the Navier-Stokes equations to be simplified to a boundary-layer system. An 

integral method [5] has been proposed which gives a semi-parabolic velocity profile. The assumption of self-similarity has been 
verified [6]. A system of two equations has been derived within the framework of the integral approach [7, 8]: one for the 

instantaneous thickness and one for the flow rate of the fluid for moderate Reynolds numbers. Stationary nonlinear running 

waves of the first kind, which are similar in form to sinusoidal waves, have been found from this approach [7, 8]. Highly 
nonlinear solutions of this system --  which correspond to waves with a smoothly sloping tail, a steep front, and a capillary ripple 

ahead of the wave - -  can only be solved numerically [9, 10]. The development stages of both stimulated and naturally occurring 
waves, including two types of attractors, were examined [11] by extending an earlier theory [8, 12]. The theoretical results 
agreed quantitatively with experiment in the main part of the wave, but the capillary ripple, predicted by the integral approach, 
was much stronger and had a higher oscillation amplitude than in experiments. 

Nonlinear theory has been examined and the velocity profde has been determined for waves of the first kind in the long- 
wavelength approximation for stationary running waves [13]. Stationary nonlinear solutions, based on boundary-layer equations 
and integral equations for describing film flow, give good agreement with experiment [14]; a detailed comparison is in progress. 

A transient solution of the Navier-Stokes equations has been done in the long-wavelength approximation for the initial stage 

of wave development, up to the occurrence of reverse flow in the thinnest part of the t'tim [15]. 
Transient finite-element solutions for the complete system of Navier-Stokes equations have been found without any 

approximations [16]. A complete numerical solution using Galerkin's method has been presented for a stationary running wave 
in viscous fluid layers [17]. Calculations were done for various values of the dimensionless surface stress, including zero stress. 

Here a new pseudospectral method is presented for calculating the transient development of a wave within the framework 

of the long-wavelength approximation. It can compute the complete development of the wave until it becomes stationary. This 

stationary wave is compared with the solution to the stationary equations. The solution is extended parametrically to large 
Reynolds numbers in order to determine the effect of Reynolds number on the wave characteristics. Solutions found for the long- 

wavelength approximation are compared with solutions [17] of the complete system of equations. 

1. PROBLEM FORMULATION 

A viscous incompressible fluid flows down a vertical plane by gravity. The flow is assumed to be two-dimensional and 
periodic with a wavelength X. The x-axis is directed downward along the gravity-acceleration vector g; the y-axis is 

perpendicular to the surface. We will assume that the wavelength is much larger than the film thickness. As Nusselt showed, 

a falling fluid film always has a trivial stationary solution with a smooth plane-parallel free surface: 
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h (x) = consl, 

u = (ghZ/2v) ( 2 y / h  - y2/h2) = uo ( 2 y / h  - y2/h2), 

q = gh~/3v. 

where h is the film thickness; u is the film velocity; u o = ghe/2~, is the velocity on the trim surface; q is the fluid flow rate; and 
p is the kinematic viscosity. 

In the long-wavelength approximation (h/X ,~ 1), a boundary-layer type system is obtained from the complete 

Navier-Stokes equations. We make it dimensionless by using (h) (the film thickness averaged over a wavelength), u o (the 

Nusselt velocity on the surface of an unperturbed film with thickness (h)), and o (the fluid density). We map the motion onto 
the strip [0, 1] by transforming the transverse coordinate 

"t I = 1 - y / h  (x, t). 

As a result, the transformed system of equations is written in the form 

Ou Ou 10u ( Oh Oh ) Oah 
O-7 + U-~x + ~ ~ ( l - - ~ l ) - ~ + ( 1 - T I ) U ~ x - - V  = W e ~ + - - O x  3 

Ou + ( 1 _ _ -  TI) Oh Ou I O. = O, 
Ox h Ox ~ h t~l 

1 o2-, 2 
I- 

Re h 2 oNI 2 Re'  

where u is the x-component of  the velocity; v is the ~/-component of velocity; h is the instantaneous f'dm thickness; Re = 

" - 7 is the Reynolds number; We o~o~/,) = . Fi is the Weber number; Fi = ~ / p 3 g r  is the film number; 

and tr is the surface stress coefficient. The boundary conditions are as follows: 

t t = v = O  for ~ =  1, 

Oh Oh 
o = ~ + u - d - ~ x  for  q = 0 ,  

Ou 
--= 0 for 11 = O. 
o~ 

The limits for integrating the continuity equation over ~ account for the no-slip condition for the transverse velocity: 

v = ( l - ~ l )  u ~ - ~  h u d ~ .  

From this equation and conservation of momentum, we obtain the equation for the film thickness 

o ~ + ~  h u d n  = 0 .  
o 

After several simple transformadous, we eliminate the momentum boundary condition, and have the final system of two 
equations 

~ + U - ~ x +  hO,i "q~x(h u d ~ l ) - ~ x ( h  ud'q) = W e ~  ~ 2 + - - ;  (1.I) 
[ o o ~  R. h 2 R. 
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o-;+~ h ud~ = 0 .  
0 

The boundary conditions are as follows: 

u = 0  for  l q = l ;  
Ou 
-- = 0 for ~ = 0. 
On 

Complete formulation of the transient problem requires initial conditions for the functions u(x, 7, t) and h(x, t): 

u (x, ,1, 0) = / o  (x, '0,  h (x, 0) = go (x). 

These equations can only be solved numerically because of their high nonlinearity and complexity. 

(1.2) 

(1.3) 

(1.4) 

2. SOLUTION M E T H O D  

Today there are no universal methods for solving nonlinear transient problems which describe the behavior of 
perturbations in active dissipative media. Here we decided to use relatively recent spectral and pseudospectral methods, which 

can be used for direct numerical modeling of turbulent flows [18]. In many cases, the effectiveness of  the method depends on 

the proper choice of  basis functions [19]. 
We seek solutions of  the form 

N 

h (x, t) = ~ h,, (t) exp {icmx}, 
n ~ - N  

M N 

u (x, 4, t) = ~ ~ u,,,, (t) exp {tanx} T,,,(rl), 
m ~ 0 . = - N  

where the Tin01) = cos(m arccos 7) are Chebyshev polynomials. 
Chebyshev polynomials are used when the calculational points are concentrated near the wall, which is important in 

approximating steep velocity gradients. Their big advantage is that they are directly related to cosines and allow the use of rapid 
transform algorithms [20]. Chebyshev polynomials have been applied successfully for calculating stationary wave motion in films 

[17]. Here we used Galerkin's method to formulate a system of ordinary differential equations. 

The system of Eqs. (1.1)-(1.4) is solved by a pseudospectral method, with a f'mite-difference approximation in time. 

The velocity is expanded only in even orders of Chebyshev polynomials, which satisfy the boundary condition (1.4) directly. 
It should be noted that using a spectral decomposition makes the system rigid, because of the discretization of the initial 
equations [21]; this requires using special finite-difference grids for integrating over time [22]. A characteristic of spectral 
methods is the occurrence of  aliasing errors [23], which arise from cutting off the series in calculating nonlinear terms. This 

can lead to numerical instability due to error accumulation as the wave calculation proceeds. There are two methods to control 

this: increase the number of  harmonics, which greatly increases computation time, or use filtering or smoothing [24]. Here we 
choose the second path. Filtering or smoothing was only used on the x-coordinate, which is directed along the flow. The 

following filter was used 

1, k ~; ko, 
/ (k)= exp(-a(k-ko)4), k>/co, 

where k is the wave vector and a is a constant. The velocity and the thickness were filtered at each step. Only the stable modes, 

which should attenuate according to linear theory [1, 2], were suppressed. Smoothing was done with a five-point equation 

55 



f (x) = (--f (x -- 2Ax) + 4f (x - Ax) + 10/(x) + 4f (x + Ax) - f (x + 2Ax))/16, 

with which the filter, which corresponds to this operation, can be obtained via a Fourier transform. It was verified that the 

transform also suppressed the stable modes. The number of time steps between smoothing was chosen by experiment. If it was 
done on every step, the smoothing would not bring out the high-frequency part of  the spectrum; therefore, the wave profile 
would differ only weakly from a sine wave. 

Most of  the solutions here were smoothed in this way. Filtered and smoothed solutions agree satisfactorily over most 
of the wave. Actually, smoothing or filtering introduces additional dissipation, which can suppress the numerical instabilities 
which arise from the inaccuracies in calculating nonlinear terms and spatial variables. The stationary problem was solved in order 
to test the solution to the transiem problem. 

Let the solution to the initial system (1.1)-(1.4) be a stationary running wave 

h (x ,  t) = h ( x  - ct) ,  u (x ,  Tl, t) = u ( x  - ct, rl). 

Then the equations can be represented in the form 

0 

I O2u 2 
= 0; 

Re h ~ Oq 2 Re 

O3h 
W e ~ -  

d x  3 

(2.1) 

(2.2) 

u = O  for  TI= 1. (2.3) 

As noted previously, using only even-order Chebyshev polynomials satisfies the boundary condition (1.4). The boundary 
condition (2.3) will be fulfilled by the r-method [23]: in essence the coefficient for the last harmonic is determined directly from 

the boundary condition (2.3). Because Tin(1 ) = 1, then 

from which the last mode can be expressed as 

M 

X U=.  ---- O. 
m -O  

M - 2  

"M.=Eu~, I"I~N. 

Let ~ = x - ct, then 

/q 

h (~) = ~ h~ exp {tcm~}, 
n 1 -p/ 

M N 

u (~, ~1) = ~ ~ u,~ exp {icm~} Tm 01)" 
mffiO n=--N 

Application of  the spectral method leads to a system of nonlinear equations for the decomposition coefficients 11 n and um.  We 

obtain a system of  equations of  the type 

Fi (h-re . . . . .  h~ . . . . .  h~ . . . . .  u . . . . . . .  UMN, C, A )  = O. (2.4) 
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In formulating the problem, the average film thickness was fixed; therefore h o is known. We also specify lm(hl) equal to the 

value from the steady-state solution to the transient problem (this is not fundamental, but is convenient for further comparison). 

From this we obtain the missing equations in A and c. 

We write Eqs. (2.4) in the form 

F~ (xl, x2 . . . . .  x~) = 0. 

This system is solved by Newton's method 

o~ I a.~ = - F, (x ~ 
Oxj I x - x ~ 

where xj ~ is the initial approximation. If xj ~ is in the attractor region of the solution, then the process converges. The Jacobian 

matrix is calculated by a t'mite-difference method: 

and the function F i itself is calculated by the pseudospectral method. 

The initial approximation is taken to be the stationary solution obtained by solving the transient problem --  Eqs. (2.1)- 

(2.3). The solution is extended parametrically to large Reynolds numbers; i.e., the increments in the Reynolds numbers are 

chosen so small that Newton's iteration converges. The initial solution for the new Reynolds number is the solution for the 

previous Reynolds number. 

3. RESULTS OF T HE  CALCULATIONS 

Two fluids were used in the calculations: water and a water-glycerine mixture. For water, ~, = 1.03.10 -6 m2/sec and 
o/p = 72.9.10 -6 ma/sec2; for the water-glycerin mixture, I, = 4.9.10 -6 m2/sec and o/p = 59-10 -6 m3/sec 2. The same 

parameters were used as in [17], so the results from [17] could be compared. 

In solving the transient problem, the initial condition was chosen to be a sinusoidal perturbation of  the film surface with 

a wavelength X and an amplitude of  0.3-0.5. The initial velocity prof'de was specified to be semi-parabolic. The amplitude 

decreased during the initial wave development. After the wave formed a sharp enough front, the amplitude started to increase. 

A capillary ripple started when the steepness of  the front reached its maximum. After this the wave became stationary. During 

the calculations we computed the flow Reynolds number Req, which is used by most authors: 

Req = Q/v 

). h 

' f  f where Q = ~ dx u dy is the average flow rate. As can be seen, Req is not specified initially, but is established as the 
o 0 

transient develops. Therefore it is not easy to compare the calculated stationary solution with the stationary running waves 

obtained by other investigators within the framework of an integral model, where Req is usually specified. 

Depending on the initial perturbation wavelength, two types of  waves develop. For small wavelengths, the resultant wave 

is close to the sinusoid in Fig. 1 (Re = 8.75, We = 11.23, and X = 30). At larger wavelengths the wave has a gently sloping 

tail and a steep front, with a capillary ripple ahead of the front (Fig. 2: Re = 15.5, We = 42.82, X = 98, Req = 10.96, and 

c = 2.08). In Fig. 2 the dashed curve shows the solution of the stationary Eqs. (2.1)-(2.3) (for Req = 10.97 and c = 2.10), 

where the initial approximation was the result of  the transient development. The agreement is Very good. In these calculations 

64 harmonics were taken along the Ox axis, while the solution along the Oy axis was approximated by an eighth-order 

polynomial. Actually, the last two coefficients in the polynomial went to zero. Other cases of  transient development to a 

stationary wave are shown in Fig. 3 (Re = 8.75, We = 11.23, X = 98, Req = 6.10, and c = 2.11) and Fig. 4 (Re = 30, 
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We = 1.44, X = 98, Req = 15.56, and c = 1.98). Figure 4 shows the case of large Reynolds numbers. As can be seen, the 

wave amplitude = 5. These large amplitudes are not found in the linear theory. It should be noted that when tiffs solution is 

used as an initial approximation, the Newton iteration method for solving the stationary equations did not converge. Evidently 

there are no stationary solutions at such large Reynolds numbers, but a quasi-stationary form of  the type shown in Fig. 4 
appears; or else the wave cannot attain such a form and decays into three-dimensional waves. In tlais case velocity profile is 
nowhere near semi-parabolic, and strong vortex flows arise near the peak of the wave. 

New stationary solutions were sought by parametric extrapolation from a stationary solution like the one in Fig. 2. 
Figure 5 (Re = 22, We = 23.89, k -- 98, Req = 17.95, and c ffi 2.01) shows such a solution, and also the flow lines. A 

"drop" which hardly moves (in the coordinate system that moves with the phase velocity of  the wave) can be seen at the peak 

of the wave; such a drop is found experimentally. Figures 2 and 5 show a large precursor peak ahead of  the wave front as Re 

increases, which is not predicted by the integral theory. As Re increases, the difference from the semi-parabolic velocity profile 

constantly increases, and becomes larger as the wave becomes steeper. 

The solid curves in Figs. 6 and 7 show the dimensionless quasistatic friction r e = 3(u)/h for the stationary solutions 
in Figs. 2 and 5; ~'q is used in the approximate calculations of  film flow [7, 8]. The dashed curves show the actual friction ~- ffi 
(au/a~)]~ffil. The lower curves on the same figures show the integral form factor ~:(x) -- (u2)/(u) 2. In the main part of  the wave 

is close to 1.2, but 3' initially decreases where the film thickness ehznges rapidly, indicating a more rapidly changing velocity 

profile than parabolic, and then increases, as for linear profiles. The pulsations in the minimum-thickness region can be explained 

by the fact that the velocity is small and negative in this region. A zone of negative velocities also appeared in other calculations 
[15]. In our calculations for highly nonlinear waves with a developed capillary ripple, the velocity was always negative over 
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the whole cross section in the region of minimum film thickness. This phenomenon is unexpected and evidently is caused by 

surface-tension forces. This zone has been discussed in detail [14]. The same curves show that the deviation from a semi- 

parabolic velocity profile also increases as Re increases. Figure 8 shows the velocity profile for the case in Fig. 5 (curve 1 

corresponds to the velocity profile in the section with maximum film thickness, curve 2 is for minimum film thickness, and curve 
3 is where the film thickness drops rapidly near the minimum). Curve 3 shows the inflection in the velocity profile which 

appears if the Reynolds numbers are large enough. 
The stationary solution obtained by the schlieren method in the long-wavelength approximation has been compared 

directly with solutions from integral theory and with experiment [14]. Therefore it is interesting to compare our solution of the 
system of boundary-layer equations with solutions of the complete system of Navier-Stokes equations. In a previous 

investigation [17], most of the Navier-Stokes solutions were for small values of the dimensionless surface tension, where the 
transverse velocity component is large and the boundary-layer approximation is in doubt. Figure 9 compares the stationary 
solutions for Re = 3.27 and Fi lr3 = 50. Curves 1-3 correspond to waves for ot = 0.864, 0.643, and 0.437 (o~ is the ratio of 

the wave number to the neutral wave number from linear stability theory); the solid curves are solutions in the long-wavelength 

approximation, and the dashed curves are for the complete solution [17]. Stationary solutions of the system (1.1)-(1.4) were 

obtained as the transient developed. Then they were refined with the solution of the stationary Eqs. (2.1)-(2.3) by using the 
solution from the transient solution as the initial approximation in Newton's method. The curves show that the solutions are close 

to each other, but still differ rather substantially for these parameter values. 
In conclusion, a numerical method was developed which calculates the transient development of initially smooth 

perturbations in the long-wavelength approximation until they become stationary. The main stage of the wave development 

corresponds qualitatively to that computed [11] by the integral model [7, 8]. It can be conf'n'med that the resultant stationary 

running waves are stable, because they are established during the development of the transient. 
Stationary running-wave solutions were obtained by using the solution of the transient problem as the initial 

approximation in Newton's method. They were numerically extrapolated to larger Reynolds numbers. A new family of solutions 

was found with a large peak ahead of the tail of the wave. 

We confirmed the existence of a narrow region of negative velocities, which also appears in linear theory, but still has 

not been observed experimentally. 
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Comparison of the resultant solutions with solutions to the complete system of equations shows that the long-wavelength 
approximation can change the shape of the solution substantially when the dimensionless surface stresses are small. 

When Re <- 20, the semiparabolic approximation is valid. The basic difference appears where the steepness of the wave 
is at a maximum and increases with increasing Re. 

REFERENCES 

. 

2. 

3. 

4. 

5. 
6. 
7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

G. W. Benjamin, "Wave formation in laminar flow down an inclined plane," J. Fluid Mech., 2, 554-574 (1957). 
Ch.-S. Yin, "Stability of liquid flow down an inclined plane," Phys. Fluids, 6, No. 3 (1963). 

P. L. Kapitsa and S. P. Kapitsa, "Wave flow of thin layers of a viscous fluid. 3. Experimental study of the wave 
regime," Zh. l ~ p .  Teor. Fiz., 19, No. 2 (1949). 

V. S. Krylov, V. P. Vorotilin, and V. G. Levich, "Theory of wave motion of thin fluid films," Teor. Osn. Khim. 
Tekhnol., 3, No. 47 (1969). 

P. L. Kapitsa, "Wave flow of thin layers of a viscous fluid," Zh. l~ksp. Teor. Fiz., 18, No. 1 (1948). 
C. D. Berbente and E. Ruckenstein, "Hydrodynamics of wave flow," AIChE J., 14, No. 5 (1968). 
V. Ya. Shkadov, "Wave flow of a thin layer of a viscous fluid by gravity," Izv. Akad. Nauk Mekh. Zhidk. Gaza, No. 
1 (1967). 

V. Ya. Shkadov, "Theory of wave flows of a thin layer of a viscous fluid," lzv. Akad. Nauk Mekh. Zhidk. Gaza, No. 
2 (1968). 

A. V. Bunov, E. A. Demekhin, and V. Ya. Shkadov, "The nonuniqueness of nonlinear wave solutions in a viscous 
layer," Prikl. Mat. Mekh., 48, No. 4 (1984). 

Yu. Ya. Trifonov and O. Yu. Tsvelodub, "Wave regimes in falling fluid films," in: Hydrodynamics and Heat and Mass 
Transfer of Flows of a Fluid with a Free Surface: Collection of Scientific Works [in Russian], Novosibirsk (1985). 
E. A. Demekhin, G. Yu. Tokarev, and V. Ya. Shkadov, "Two-dimensional transient waves in a vertical fluid film," 
Teor. Osn. Khim. Tekh., 21, No. 2 (1987). 

E. A. Demekhin and V. Ya. Shkadov, "Transient waves in a layer of viscous fluid," Izv. Akad. Nauk Mekh. Zhidk. 
Gaza, No. 3 (1981). 

V. Ya. Shkadov, L. P. Kholpanov, V. A. Malyusov, and N. M. Zhavoronkov, "Nonlinear theory of wave flows of 
a fluid film," Teor. Osn. Khim. Tekh., 4, No. 6 (1970). 

E. A. Demekhin, M. A. Kaplan, and V. Ya. Shkadov, "Mathematical models of the theory of thin films of a viscous 
fluid," Izv. Akad. Nauk Mekh. Zhidk. Gaza, No. 6 (1987). 

P. I. Geshev and B. S. Ezdin, "Calculation of the velocity profile and wave shape in a falling fluid film," in: 
Hydrodynamics and Heat and Mass Transfer of Flows of a Fluid with a Free Surface: Collection of Scientific Works 
[in Russian], Novosibirsk (1985). 

P. Bach and J. Villadsen, "Simulation of the vertical flow of a thin, wavy film using a finite-element method," Int. J. 
Heat Mass Transfer, 27, No. 6 (1984). 

E. A. Demekhin and M. A. Kaplan, "Construction of accurate numerical solutions for stationary running waves in thin 
layers of a viscous fluid," Izv. Akad. Nauk Mekh. Zhidk. Gaza, No. 3 (1990). 

S. A. Orszag and G. S. Patterson, "Numerical simulation of three-dimensional homogeneous isolropic turbulence," 
Phys. Rev. Lea., 28, No. 1 (1972). 

S. A. Orszag and M. Israeli, "Numerical simulation of viscous incompress~le flows," Annual Review of Fluid Mech., 
Palo Alto, CA (1974), Vol. 6, p. 281. 

V. A. Gaponov, "Fast Fourier transform package with application to modeling random processes," Preprint No. 14-76 
[in Russian], Academy of Sciences, Siberian Division, Institute of Thermal Physics, Novosibirsk (1976). 
D. Gottlieb and L. Lusnnan~ "The Dul'ort-Frankel Chebyshev method for parabolic initial-bounoary problems," 
Computers and Fluids, 11, No. 2 (1983). 

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, 
NY (1971). 

U. Shuman, G. Gretzbach, and L. Clauser, Direct Methods of Numerical Modeling of Turbulent Flows [Russian 
translation], Mir, Moscow (1984). 
R. Perrey and T. D. Taylor, Numerical Methods in Problems of Fluid Mechanics [Russian translation], Gidrometeioiz- 
Oat, Leningrad (1986). 

60 


